Connect with us


Scientists grow human blood vessels from stem cells in a dish





Researchers grew blood vessels from embryonic stem cells in a dish in the lab that look and behave like the ones found in our bodies. (IMBA)

Scientists say, for the first time, they have grown human blood vessels from scratch in the lab that look and behave like the ones in our bodies.

“The structure looks the same and the main genes which are expressed in our bodies and in these capillaries are very, very similar,” said Josef Penninger, senior author of the new research published last week in the journal Nature.

The artificially cultured blood vessel “organoids” or mini-organs are already starting to help scientists better understand some of the damage caused by diabetes, he and his colleagues report.

In the future, they could be used to help researchers understand and develop treatments for other diseases such Alzheimer’s, cancer and strokes, or transplanted into live humans to heal or replace damaged tissues, said Penninger.

He recently joined the University of British Columbia as the Canada 150 Research Chair in Functional Genetics and the director of the university’s Life Sciences Institute, but worked on the blood vessel project with colleagues at the Institute for Molecular Biotechnology of the Austrian Academy of Sciences, where he was the founding director.

Penninger said that since the methodology for growing blood vessels in the lab has been published, “anybody now can do this.”

Human, mouse differences

The lab-grown blood vessels behaved like normal human blood vessels when transplanted into mice, making it possible to do research previously impossible on diseases such as diabetes.

When exposed to high blood sugar levels found in diabetes, human blood vessels get severely damaged. That can lead to problems such as blindness, heart disease, gangrene and slow healing in diabetics.

That kind of damage doesn’t happen to the blood vessels of diabetic mice, even though mice are often used to study diabetes.

“Some aspects of disease are very specific to humans,” Penninger said.

However, when put inside mice, the lab-grown human blood vessels did become damaged by diabetes. That enabled researchers to figured out what causes the damage, Penninger said: “We can actually block this and we can totally prevent this change.”

That could, in the future, lead to possible drug treatments.

That’s one of the reasons scientists have been interested in lab-grown blood vessels. But they could also be useful for transplants to treat cardiovascular disease, to help tissues such as bones and cartilage heal more quickly or to supply blood to grow tissues and even organs outside the body.

The lab-grown blood vessel ‘organoids’ are damaged by high blood sugar the way real human blood vessels are. The basement membrane (green) around the blood vessels (red) is massively enlarged in diabetic patients (white arrows). Implanting the lab-grown blood vessels in mice allows researchers to study the effects of high blood sugar in humans. (IMBA)

Researchers were able to grow the blood vessels in a dish by studying how they develop in human embryos, and mimicking the process with embryonic stem cells in the lab.

Figuring out the exact recipe took lead researcher Reiner Wimmer about three years, Penninger said.

But once he had it, he could get the stem cells to turn into different cell types and assemble themselves into a complex tube with layers of different kinds of cells — just like real blood vessels.

Scaling up in a mouse

In the lab, they could grow a bundle of small blood vessels called capillaries a couple of millimetres in diameter.

“To our amazement,” Penninger said, researchers found they could scale up by transplanting the bundle into a mouse — there the blood vessels grew and expanded to include bigger arteries and veins and connected themselves to the mouse’s blood supply. Some of them worked inside the mice for six months — a long time in an animal with a lifespan of about two years.

Penninger said researchers hope to be able to grow bigger blood vessels in a dish too, but right now it’s only possible inside mice.

Josef Penninger, senior author of the new study, recently joined the University of British Columbia as the Canada 150 Research Chair in Functional Genetics and the director of the university’s Life Sciences Institute, but worked on the blood vessel project with colleagues at the Institute for Molecular Biotechnology of the Austrian Academy of Sciences. (UBC)

In a news release, researchers described the blood vessels as “perfect” human blood vessels because their structure and cells so closely resembled blood vessels found in humans.

“It’s not 100 per cent faithful to what we see in our body, obviously,” Penninger said, “but coming very close.”

One thing researchers want to try now is transplanting the lab grown blood vessels into different parts of the mouse’s body (they started with the kidney) and seeing what happens.

They’ve also started cultivating lab-grown blood vessels from the cells of patients with a genetic blood vessel disease called cadasil, in the hopes of figuring out how it causes heart attacks and strokes when they’re in only their 40s.

Next-generation mini-organs

Scientists have been using stem cells to grow mini-organs called “organoids” that resemble body parts ranging from the brain to the pancreas for the past few decades. But up until now most have contained only one cell type, Penninger said: “What we actually need now is next generation of organoids which have multiple cell types.”

That’s what the new blood vessel organoids represent, he said. “I think that’s actually very cool.”

Jeff Karp, professor of medicine at Brighan and Women’s Hospital and Harvard Medical School,  in Cambridge, Mass., does research on stem cells and tissue and organoid engineering but was not involved in the new study.

He said researchers have been developing lab-made versions of human blood vessels for a long time to study blood vessel biology and for use in tissue engineering.

The “big advance” in this study, he said in an email, is that the authors actually show how it can be used to study a disease, such as diabetes, in this case, where blood vessels are damaged, and learn something new and useful — they uncovered the protein that does the damage and found a new way to blog it to prevent the damage.

He thinks it could also be applied to research on cardiovascular disease, cancer and wound healing and could lead to new treatments..

“I  think developing technologies is easy. Showing relevance to human health is often quite difficult,” he added. “This group has [done that], which makes it big.”


Source link

قالب وردپرس


Top 5 Analytics Trends That Are Shaping The Future





Digital transformation is increasingly becoming the focus for many CIOs around the world today—with analytics playing a fundamental role in driving the future of the digital economy.

While data is important to every business, it is necessary for businesses to have a firm grip on data analytics to allow them transform raw pieces of data into important insights. However, unlike the current trends in business intelligence—which is centred around data visualization—the future of data analytics would encompass a more contextual experience.

“The known data analytics development cycle is described in stages: from descriptive (what happened) to diagnostic (why did it happen), to discovery (what can we learn from it), to predictive (what is likely to happen), and, finally, to prescriptive analytics (what action is the best to take),” said Maurice op het Veld is a partner at KPMG Advisory in a report.

“Another way of looking at this is that data analytics initially “supported” the decision-making process but is now enabling “better” decisions than we can make on our own.”

Here are some of the current trends that arealready shaping the future of data analytics in individuals and businesses.

  1. Growth in mobile devices

With the number of mobile devices expanding to include watches, digital personal assistants, smartphones, smart glasses, in-car displays, to even video gaming systems, the final consumption plays a key role on the level of impact analytics can deliver.

Previously, most information consumers accessed were on a computer with sufficient room to view tables, charts and graphs filled with data, now, most consumers require information delivered in a format well optimized for whatever device they are currently viewing it on.

Therefore, the content must be personalized to fit the features of the user’s device and not just the user alone.

  1. Continuous Analytics

More and more businesses are relying on the Internet of Things (IoT) and their respective streaming data—which in turn shortens the time it takes to capture, analyze and react to the information gathered. Therefore, while analytics programspreviously were termed successful when results were delivered within days or weeks of processing, the future of analytics is bound to drastically reduce this benchmark to hours, minutes, seconds—and even milliseconds.

“All devices will be connected and exchange data within the “Internet of Things” and deliver enormous sets of data. Sensor data like location, weather, health, error messages, machine data, etc. will enable diagnostic and predictive analytics capabilities,” noted Maurice.

“We will be able to predict when machines will break down and plan maintenance repairs before it happens. Not only will this be cheaper, as you do not have to exchange supplies when it is not yet needed, but you can also increase uptime.”

  1. Augmented Data Preparation

During the process of data preparation, machine learning automation will begin to augment data profiling and data quality, enrichment, modelling, cataloguing and metadata development.

Newer techniques would include supervised, unsupervised and reinforcement learning which is bound to enhance the entire data preparation process. In contrast to previous processes—which depended on rule-based approach to data transformation—this current trend would involve advanced machine learning processes that would evolve based on recent data to become more precise at responding to changes in data.

  1. Augmented Data Discovery

Combined with the advancement in data preparation, a lot of these newer algorithms now allow information consumers to visualize and obtain relevant information within the data with more ease. Enhancements such as automatically revealing clusters, links, exceptions, correlation and predictions with pieces of data, eliminate the need for end users to build data models or write algorithms themselves.

This new form of augmented data discovery will lead to an increase in the number of citizen data scientist—which include information users who, with the aid of augmented assistance can now identify and respond to various patterns in data faster and a more distributed model.

  1. AugmentedData Science

It is important to note that the rise of citizen data scientist will not in any way eliminate the need for a data scientist who gathers and analyze data to discover profitable opportunities for the growth of a business. However, as these data scientists give room for citizen data scientists to perform the easier tasks, their overall analysis becomes more challenging and equally valuable to the business.

As time goes by, machine learning would be applied in other areas such as feature and model selection. This would free up some of the tasks performed by data scientist and allow them focus on the most important part of their job, which is to identify specific patterns in the data that can potentially transform business operations and ultimately increase revenue.

Continue Reading


Waterloo drone-maker Aeryon Labs bought by U.S. company for $265M






Waterloo’s Aeryon Labs has been bought by Oregon-based FLIR Systems Inc. for $256 million, or $200 million US.

The acquisition was announced Monday. 

Dave Kroetsch, co-founder and chief technology officer of Aeryon Labs, says not much will change in the foreseeable future.

“The Waterloo operations of Aeryon Labs will actually continue as they did yesterday with manufacturing, engineering and all the functions staying intact in Waterloo and ultimately, we see growing,” he said.

“The business here is very valuable to FLIR and our ability to sell internationally is a key piece of keeping these components of the business here in Canada.”

Aeroyn Labs builds high-performance drones that are sold to a variety of customers including military, police services and commercial businesses. The drones can provide high-resolution images for surveillance and reconnaissance.

The drones already include cameras and thermal technology from FLIR. Jim Cannon, president and CEO of FLIR Systems, said acquiring Aeryon Labs is part of the company’s strategy to move beyond sensors “to the development of complete solutions that save lives and livelihoods.”

‘A piece of a bigger solution’

Kroetsch said this is a good way for the company to grow into something bigger.

“We see the business evolving in much the direction our business has been headed over the last couple of years. And that’s moving beyond the drone as a product in and of itself as a drone as a piece of a bigger solution,” he said.

For example, FLIR bought a drone company that builds smaller drones that look like little helicopters.

“We can imagine integrating those with our drones, perhaps having ours carry their drones and drop them off,” he said.

FLIR also does border security systems, which Kroetsch says could use the drones to allow border agents to look over a hill where there have been issues.

“We see the opportunity there as something that we never could have done on our own but being involved with and part of a larger company that’s already providing these solutions today gives us access not only to these great applications, but also to some fantastic technologies,” he said.

Aeryon Labs has done a lot of work during emergency disasters, including in Philippines after Typhoon Hagupit in 2014, Ecuador after an earthquake in 2016 and the Fort McMurray wildfire in 2016.


Source link

قالب وردپرس

Continue Reading


Inuvik infrastructure may not be ready for climate change, says study






The Arctic is expected to get warmer and wetter by the end of this century and new research says that could mean trouble for infrastructure in Inuvik.

The study from Global Water Futures looked at how climate change could impact Havipak Creek — which crosses the Dempster Highway in Inuvik, N.W.T. — and it predicts some major water changes.

“They were quite distressing,” John Pomeroy, director of Global Water Futures and the study’s lead author, said of the findings.

Researchers used a climate model and a hydrological model to predict future weather and climate patterns in the region. They also looked at data gathered from 1960 to the present. 

If greenhouse gas emissions continue at their current rate — which Pomeroy said they are on track to do — the study projects the region will be 6.1 C warmer by 2099 and precipitation, particularly rain, will increase by almost 40 per cent.

The study also found that the spring flood will be earlier and twice as large, and the permafrost will thaw an additional 25 centimetres. While the soil is expected to be wetter early in the summer, the study said it will be drier in late summer, meaning a higher risk of wildfires.

John Pomeroy is the director of Global Water Futures. (Erin Collins/CBC)

“The model’s painting kind of a different world than we’re living in right now for the Mackenzie Delta region,” Pomeroy said.

He noted these changes are not only expected for Havipak Creek, but also for “many, many creeks along the northern part of the Dempster [Highway].”

Pomeroy said the deeper permafrost thaw and a bigger spring flood could pose challenges for buildings, roads, culverts and crossings in the area that were designed with the 20th century climate in mind.

He said the projected growth of the snowpack and the spring flood are “of grave concern because that’s what washes out the Dempster [Highway] and damages infrastructure in the area.”

Culverts and bridges may have to be adjusted to allow room for greater stream flows, Pomeroy said. And building foundations that are dependent upon the ground staying frozen will have to be reinforced or redesigned.

Pomeroy said the ultimate solution is for humans to reduce greenhouse gas emissions.

“This study is the future we’re heading for, but it’s not the future we necessarily have if we can find a way to reduce those gases,” he said.  

“It’d be far smarter to get those emissions under control than to pay the terrible expenses for infrastructure and endangered safety of humans and destroyed ecosystems.”


Source link

قالب وردپرس

Continue Reading