Connect with us


Climate change will heat up cities and rural areas differently





Climate change isn’t the only thing that will be heating up cities in the future — urbanization hikes temperatures too.

A new study led by a University of Guelph researcher looks at how climate change will affect urban and rural areas differently, finding both good news and bad news.

The good news, according to the study led by Scott Krayenhoff, an assistant professor of environmental sciences at the Ontario University, is that climate change appears to reduce the temperature boost from urbanization, known as the “urban heat island effect.”

The bad news is the combined heating effects of climate change and urbanization can’t be cancelled out by adapting urban design for a warmer climate, especially when it comes to nighttime warming, says a report on the study published this week in Nature Climate Change.

You’ve probably heard of the “urban heat island” effect. It’s caused by the fact that urban building materials like asphalt, concrete and brick soak up more heat during the day than grass and trees, and release it in the late afternoon and evening, hiking temperatures around 2 C to 3 C at those times of day.

That means urban areas are warmer than rural areas even in the absence of climate change.

Krayenhoff wanted to know what would happen if you added the urban heat island effect to climate change — would they add up as expected?

He and colleagues at Arizona State University, where he was previously a postdoctoral researcher, ran some simulations assuming that greenhouse gas emissions linked to climate change continue to rise as they have been rising. That’s expected to boost temperatures an average of 4 or 5 C in U.S. cities by 2090 to 2099.

A landscaper cuts the grass and plants on the Vancouver Convention Centre’s six-acre green roof. Green roofs cool cities by collecting rainwater and using the sun’s energy to evaporate the water instead of absorbing it as heat. (Darryl Dyck/Canadian Press)

The simulations showed that temperatures did increase quite a bit, but about 0.5 C less than might be expected than if you simply added the climate change and urbanization warming.

“Compared to the actual effect of climate change or even the urban warming, this is a small cooling effect. But it’s there,” he said, adding that it’s consistent with the findings of a previous global, but less detailed study.

That kind of effect hasn’t yet been detected in the real world, he acknowledged, but he expects that people will now try to look for it. He’s not sure exactly what causes it, but said it somehow has to do with less heat being stored during the day and released at night during a warmer future compared to what happens now.

Green roofs, building materials

He and his colleagues wondered whether it’s possible to design urban areas to mitigate the heating from both effects. For example, roofs could be built with reflective materials that bounce solar energy back into space or covered in plants and soil that collect rainwater and use the sun’s energy to evaporate the water instead of absorbing it as heat. And cities could plant more trees along streets to reduce the amount of heat stored by roads.

They found that if those measures were applied consistently across entire cities while cutting greenhouse gas emissions to reduce climate change, daytime temperatures could be kept in check.

Unfortunately, when it came to nighttime temperatures, “any of the strategies we tried and all of them in combination can’t offset warming due to climate change and urban development,” Krayenhoff said.

The only things that made a small difference to nighttime temperatures were green roofs, and switching from building materials like concrete, brick and asphalt to materials that don’t absorb heat well, such as wood, adobe or artificial turf. But Krayenhoff said the researchers wouldn’t necessarily promote the use of those materials yet, as they have other effects, such as boosting daytime temperatures.

Krayenhoff said the take-home message is we need to do what we can to reduce emissions and therefore climate change.

Otherwise, “the impacts on simply livability and health and energy use could be very large, and no matter how well we design our cities, they might be to a certain degree very warm and therefore unhealthy.”

The study was funded by the U.S. National Science Foundation, the Urban Water Innovation Network and Arizona State University.


Source link

قالب وردپرس


The ‘Maple Majestic’ wants to be Canada’s homegrown Tesla





Look out Tesla, Canada has a homegrown electric sedan on the way. Well, that’s if AK International Motor Corporation can drum up enough investment to make its EV a reality. Dubbed the “Maple Majestic,” the vehicle is a battery-electric designed to “excel in extreme climate performance without adversely affecting the climate, as befits a vehicle from Canada,” according to its website.

What’s in a name? — The company says the maple leaf is a “symbol of Canada’s warmth and friendliness towards all cultures,” while “majestic” refers to the country’s “status as a Constitutional Monarchy.”

That patriotism carries over into Maple Majestic’s parent company’s lofty goals. AK Motor founder Arkadiusz Kaminski says he wants the company, which he founded in 2012, to become “Canada’s first multi-brand automotive OEM,” and that the “Maple Majestic is intended to be Canada’s flagship brand of automobiles on the world stage.”

Partnerships are key — “We acknowledge that the best chance for the Maple Majestic brand to succeed, lies in continuing to build the relationship with Canada’s parts suppliers and technological innovators, whether they be academic institutions, corporations, or individual inventors,” the company explains. “We are currently seeking partners in automotive engineering, parts manufacturing, automotive assembly, electric propulsion technology, battery technology, autonomous technology, and hybrid power generation technology.”

In other words, don’t expect to be able to buy a Maple Majestic any time soon… and don’t expect to pour over 0-60 mph times, power output, range, or other key stats, because those don’t currently exist. For now, all we have are pictures and a short video clip. But at least those are arresting.

Continue Reading


PE-backed Quorum Software to merge with Canadian energy tech firm





Houston-based energy technology company Quorum Software will merge with a Canadian tech firm to bolster its presence in oil and gas services.

Quorum announced Feb. 15 it plans to merge with Calgary, Alberta-based Aucerna, a global provider of planning, execution and reserves software for the energy sector. The combined firm will operate under the Quorum Software brand.

Gene Austin, CEO of Quorum Software, will continue in his capacity as chief executive of the combined firm. Austin, former CEO of Austin-based marketing tech firm Bazaarvoice Inc., became CEO of Quorum in December 2018.

Aucerna co-founder and CEO Wayne Sim will be appointed to the Quorum Software board of directors. Both companies are backed by San Francisco- and Chicago-based private equity firm Thoma Bravo.

“Over the last 20 years, Quorum has become the leading innovator of software deployed by North American energy companies,” said Austin. “Today, Quorum is expanding the scope of our technology and expertise to all energy-producing regions of the globe. Customers everywhere will have access to a cloud technology ecosystem that connects decision-ready data from operations to the boardroom.”

In addition to the merger announcement, Quorum Software announced it had entered into an agreement with Finnish IT firm TietoEvry to purchase TietoEvry’s entire oil and gas business. The agreement, which includes hydrocarbon management, personnel and material logistics software and related services, is valued at 155 million euros, or $188 million, according to a statement from TietoEvry.

“Our three organizations complement each other — from the software that our great people design to the energy markets where we operate,” said Sim. “Our new company will be able to deliver value to our stakeholders, while accelerating the growth of our combined business and the energy industry’s software transformation.”

The combined company will serve over 1,800 energy companies in 55 countries, according to the announcement. With its headquarters in Houston, Quorum will continue to have a significant presence in Calgary and in Norway, the headquarters for TietoEvry’s oil and gas software business. Quorum will have other offices throughout North America, Latin America, Europe, Asia and the Middle East.

As of Sept. 30, 2020, private equity firm Thoma Bravo had more than $73 billion in assets under management. In late December 2020, Thoma Bravo agreed to acquire Richardson, Texas-based tech firm RealPage in a roughly $10 billion acquisition.

Continue Reading


Piece of Kitchener technology lands on Mars on Perseverance rover





KITCHENER — A piece of Kitchener technology has landed on Mars, thanks to NASA’s Perseverance rover.

The rover settled on the planet’s surface on Thursday afternoon. It’s been travelling through space since it was launched from Cape Canaveral, Fla. in July.

“The whole idea of being on a device that we’re sending to another plant with the express mission of looking for traces of past life, it’s pretty mind boggling actually,” said Rafal Pawluczyk, chief technical officer for FiberTech Optica.

The Kitchener-based company made fibre optic cables for the rover’s SuperCam that will examine samples with a camera, laser and spectrometers.

“The cables that we built take the light from that multiplexer and deliver it to each spectrograph,” Pawluczyk said.

The cables connect a device on the rover to the SuperCam, which will be used to examine rock and soil samples, to spectrometers. They’ll relay information from one device to another.

The project started four years ago with a connection to Los Alamos National Lab, where the instruments connected to the cables were developed.

“We could actually demonstrate we can design something that will meet their really hard engineering requirements,” Pawluczyk said.

The Jezero Crater is where the Perseverance rover, with FiberTech Optica’s technology onboard, landed Thursday. Scientists believe it was once flooded with water and is the best bet for finding any evidence of life. FiberTech’s cables will help that in that search.

Ioannis Haranas, an astrophysicist and professor at Wilfrid Laurier University, said the rover isn’t looking for “green men.”

“They’re looking for microbial, single-cell life, any type of fossils and stuff like that,” Haranas said. “That’s why they chose a special landing site. This could be very fertile land for that.”

“It’s very ambitious,” said Ralf Gellert, a physics professor at the University of Guelph.

Gellert helped with previous rover missions and said it’s the first time a Mars rover has landed without a piece of Guelph technology on it. While he’s not part of Perseverance’s mission, he said the possibilities are exciting.

“Every new landing site is a new piece of the puzzle that you can put together with the new results that we have from the other landing sites,” he said.

“It’s scientifically very interesting because, even though we don’t have an instrument on that rover, we can compare what the new rover Perseverance finds at this new landing site,” he said.

Now that Perseverance has landed on Mars, FiberTech is looking ahead to its next possible mission into space.

Continue Reading