Connect with us

Health

Ketogenic Diet Keeps Your Brain Healthy and Youthful

Editor

Published

on

[ad_1]

Alzheimer’s disease — the most severe form of dementia — is proving to be stubbornly resistant to conventional remedies. More than 190 human drug trials have ended in failure,1 and despite a burgeoning epidemic, the best drugs on the market only ameliorate symptoms while adding other health risks.

At present, the best conventional medicine can really hope for is improved diagnosis, which is why prevention is so crucial. Mounting research suggests your diet is indeed a foundational driver of this disease, and an effective prevention strategy.

Perhaps the most important dietary factor that impacts your Alzheimer’s risk is the amount of net carbs (total carbs minus fiber) you consume on a regular basis. A high-sugar diet triggers insulin resistance — currently thought to affect as many as 8 in 10 Americans2,3 — and there’s a very strong link between insulin resistance and Alzheimer’s.4

For example, a longitudinal study5 published in the journal Diabetologia in January 2018, which followed nearly 5,190 individuals for over a decade, found that the higher an individual’s blood sugar, the faster their rate of cognitive decline.

Even mild elevation of blood sugar and mild insulin resistance are associated with an elevated risk for dementia.6,7Diabetes and heart disease8 are also known to elevate your risk, and both are rooted in insulin resistance.

One of the most striking studies9 on carbohydrates and brain health revealed high-carb diets increase your risk of dementia by 89 percent, while high-fat diets lower it by 44 percent. According to the authors:

“A dietary pattern with relatively high caloric intake from carbohydrates and low caloric intake from fat and proteins may increase the risk of mild cognitive impairment or dementia in elderly persons.”

Nutritional Ketosis Protects and Supports Healthy Brain Function

A ketogenic diet is high in healthy fats and low in net carbohydrates, and one of the primary benefits of this kind of diet is that it allows your body to start burning fat as its primary fuel rather than sugar.

When your body burns fat as its primary fuel, ketones are created, which not only burn very efficiently and are a superior fuel for your brain, but also generate fewer reactive oxygen species (ROS) and less free radical damage. But that’s not all.

A type of ketone called beta-hydroxybutyrate is also an important epigenetic player, having significant effects on DNA expression, increasing detoxification pathways and your body’s own antioxidant production. Beta-hydroxybutyrate also stimulates specific receptors on cells called g-proteins.

When these receptors are tagged by this beta-hydroxybutyrate during mild ketosis, it helps reduce the activation of pathways that lead to inflammation, and inflammation is a driver in most all chronic diseases, be it Alzheimer’s, heart disease, diabetes or cancer. So, it’s not merely about powering your cells with fat.

A ketogenic diet also helps alter your metabolism, thereby paving the way for health. The benefits of nutritional ketosis for brain health were again demonstrated in two recent papers — an animal study and a scientific review.10,11,12,13,14

In the first paper, researchers found that this kind of diet improves neurovascular function, in part by improving the gut microbiome. In the second paper, they concluded the ketogenic diet acted as a veritable “fountain of youth” for aging rodents, significantly improving neurovascular and metabolic functions in the animals, compared to those eating an unrestricted diet.

How a Ketogenic Diet Protects Against Alzheimer’s Disease

As noted in the first study,15 published in Scientific Reports, “Neurovascular integrity, including cerebral blood flow and blood-brain barrier function, plays a major role in determining cognitive capability.”

More specifically, poor neurovascular function is strongly associated with loss of language, memory and attention, while reduced cerebral blood flow raises your risk for depression, anxiety and dementia. Impaired blood-brain barrier function has also been linked to inflammation in the brain, dysfunction of synapses, impaired clearance of amyloid-beta plaques, psychiatric disorders and dementia.16

“Interventions that maintain gut microbiome and neurovascular integrity may thus be crucial for impeding neurological disorders,” Ai-Ling Lin and her colleagues at the Sanders-Brown Center on Aging at the University of Kentucky note.17

Recent studies have demonstrated that your gut microbiome can play a significant role in neurovascular integrity, so here they sought to determine whether a ketogenic diet might have a beneficial impact on the gut microbiome, thereby enhancing neurovascular function and reducing the risk of neurodegeneration in mice.

Previous studies have also demonstrated that a ketogenic diet can benefit those suffering traumatic brain injury, ischemic stroke and autism, likely by way of altering your gut microbiome.

“Collectively, [a ketogenic diet] may be protective against various neurological disorders, possibly through the restoration of neurovascular function and by maintaining healthy gut microbiome,” the authors note. The present study adds further support to this hypothesis. Compared to animals given regular chow, rodents fed a ketogenic diet for 16 weeks were found to have:










Significant increases in cerebral blood flow

Significant increase in P-glycoprotein transports on the blood brain barrier, which improves clearance of amyloid-beta, a main component of the plaque that accumulates in the brains of those with Alzheimer’s disease

Reduced mechanistic target of rapamycin (mTOR), which is associated with the promotion of general health, a lower risk of cancer and extension of life span

Increased endothelial nitric oxide synthase (eNOS) protein expression

Increased relative abundance of the beneficial gut microbiota Akkermansia muciniphila (2.5fold increase) and Lactobacillus (3.2fold increase), both of which produce short-chain fatty acids (SCFAs) that ferment dietary fiber and nourish colonic cells, thereby lowering your risk for bowel inflammation. According to the authors, lack of SCFAs can also increase blood-brain-barrier permeability

Reduced abundance of the proinflammatory microbes Desulfovibrio and Turicibacter. Desulfovibrio was completely absent in treated mice, and these microbes are also known to impair the gut barrier

Increased blood ketone levels, and recent research18 shows the cerebral metabolic rate of ketones represents about one-third (33 percent) of the brain’s energy requirement after four days on a ketogenic diet

Reduced blood glucose levels, possibly due to an increase in Akkermansia muciniphila. Previous research has shown that A. muciniphila increases when Type 2 diabetics are given metformin, medication that increases glucose utilization by activating the MP-activated protein kinase (AMPK) pathway. A. muciniphila is also associated with increased insulin sensitivity and weight loss

Lower body weight, possibly due to increases in Lactobacillus, which have been linked to weight loss and improved fat loss in several studies. As noted by the authors:19

“Being able to maintain proper body weight and blood glucose level is crucial for reducing risk for Alzheimer’s disease, which is known as Type 3 diabetes with increased glucose intolerance in the brain …

Recent advances indicate that excessive white fat increases secretion of pro-inflammatory cytokines from adipocytes, which could consequently lead to neuroinflammation, amyloid-beta retention, brain cell death and dementia …

Furthermore, ketogenic diet improves hippocampal glycolytic and tricarboxylic acid cycle intermediates and amino acid in a 3xTgAD mouse model, suggesting that ketogenic diet may also improve insulin sensitivity in the brain. It indicates that ketogenic diet-induced body weight loss may evoke metabolic and immune function changes that potentially lead to neuroprotective effects”

According to the authors, “Our findings suggest that ketogenic diet intervention started in the early stage may enhance brain vascular function, increase beneficial gut microbiota, improve metabolic profile, and reduce risk for Alzheimer’s disease.” Lin also told Eurekalert,20

“While diet modifications, the ketogenic diet in particular, has demonstrated effectiveness in treating certain diseases, we chose to test healthy young mice using diet as a potential preventative measure. We were delighted to see that we might indeed be able to use diet to mitigate risk for Alzheimer’s disease.”

Neuroimaging Sheds Light on How Ketogenic Diet Affects the Brain

In a follow-up paper21 published in the journal Frontiers in Aging Neuroscience, Lin’s team discusses the neuroprotective effects of mTOR inhibition in Alzheimer’s disease and aging by looking at recent studies using neuroimaging techniques to evaluate the effects of three interventions — rapamycin (an mTOR inhibitor), the ketogenic diet and simple caloric restriction — on the living brain.

Both rapamycin administration and caloric restriction have previously been shown to inhibit mTOR — a protein bound by rapamycin — thereby increasing health and life span in a number of different species.

Inhibiting mTOR has also been shown to protect against age- and disease-related neurodegeneration by improving and preserving mitochondrial function and inhibiting the retention of amyloid beta in the brain.22 “Notably, rapamycin reduces amyloid-beta plaques and neurofibrillary tau tangles and improves cognitive functions in mice that model human Alzheimer’s disease,” the authors state.

To assess the impact of mTOR inhibition in vivo, studies have used a number of different magnetic resonance imaging methods, including angiography, spectroscopy, confocal microscopic imaging and positron emission tomography (PET). In summary, the authors conclude that:

“… [R]apamycin is a preventative, and possibly a treatment, for the effects of the [Alzheimer’s disease] phenotype observed in APOE4 and hAPP(J20) transgenic mouse models of [Alzheimer’s disease]; [caloric restriction] and [ketogenic diet] can enhance brain vascular functions and shift metabolism in young healthy mice; and [caloric restriction] can preserve brain metabolic and vascular functions in aging.

We summarize these findings in Figure 123 [see below]. As the quantitative PET and MRI neuroimaging methods used in these studies in animal models can be translated into human studies, they will be greatly useful in future studies to examine the effects of these mTOR-related interventions in preventing brain function declines associated with aging and neurodegeneration in clinical trials.”

mTOR

Lin and her colleagues are now designing a clinical trial to further investigate how the human gut microbiome influences neurovascular dysfunction, which is a known risk factor for Alzheimer’s, in otherwise healthy adults. Lin told Eurekalert:24

“We will use neuroimaging to identify the association between gut microbiome balance and brain vascular function in individuals over 50 years of age, with an ultimate goal to design and test nutritional and pharmacological interventions that will prevent Alzheimer’s disease.”

Sugar Atrophies Your Hippocampus, Impairing Memory

While the ketones produced in response to a high-fat (ketogenic) diet are an ideal source of brain fuel, research25 published in 2013 showed that sugar and other carbohydrates can disrupt your brain function even if you’re not diabetic or have any signs of dementia.

Here, short- and long-term glucose markers were evaluated in healthy, nondiabetic seniors without dementia. Memory tests and brain imaging were also used to assess brain function and the actual structure of their hippocampus. The findings revealed that the higher the two blood glucose measures, the smaller the hippocampus, the more compromised its structure, and the worse the individual’s memory was.

According to the authors, the structural changes in the hippocampus alone can partially account for the statistical link we see between glucose and memory, as your hippocampus is involved with the formation, organization and storage of memories.

The results suggest glucose directly contributes to atrophy of the hippocampus, which means that even if you’re not insulin resistant or diabetic, excess sugar may still be negatively affecting your memory. The authors suggest that “strategies aimed at lowering glucose levels even in the normal range may beneficially influence cognition in the older population.”

A similar study26 published in 2014 found that Type 2 diabetics lose more gray matter with age than expected, and this brain atrophy also helps explain why diabetics have a higher risk for dementia, and have earlier onset of dementia than nondiabetics.

As noted by Dr. Sam Gandy, director of the Center for Cognitive Health at Mount Sinai Hospital in New York City, these findings “suggest that chronic high levels of insulin and sugar may be directly toxic to brain cells” adding that “This would definitely be a potential cause of dementia.”27

Prevention and Early Detection Are Key to Stem Dementia Tide About to Overtake Us

According to a report by the Alzheimer’s Association,28 the U.S. spends about $277 billion on dementia care each year,29,30 and that doesn’t include care by unpaid caregivers. About 70 percent of these costs are paid by the families through out-of-pocket expenses.

On average, the out-of-pocket expenses for caregivers of someone with dementia are $10,697 per year, and 40 percent of caregivers have an annual household income below $50,000. By 2050, we may be looking at a health care bill of $1.1 trillion per year to take care of our seniors with dementia.

Considering 5.7 million Americans currently have Alzheimer’s and prevalence is projected to rise nearly 29 percent in the next seven years alone, it would behoove everyone to take prevention seriously, and begin taking proactive steps sooner rather than later. For while the financial costs may be steep, no price can be placed on the emotional and psychological costs associated with this tragic disease. 

That said, early detection can certainly be helpful, and strides are being made in the development of a blood test to detect Alzheimer’s.31 In a recent trial,32 the test was 90 percent accurate in detecting the disease in a pool of 370 participants.

One of the most comprehensive assessments of Alzheimer’s risk is Dr. Dale Bredesen’s ReCODE protocol, which evaluates 150 factors known to contribute to the disease. This protocol also identifies your disease subtype or combination of subtypes so that an effective treatment protocol can be devised. You can learn more about this in “ReCODE: The Reversal of Cognitive Decline.”

The full protocol is described in Bredesen’s book, “The End of Alzheimer’s: The First Program to Prevent and Reverse Cognitive Decline.”33 However, if you’re diagnosed with early warning signs, that still means you’re on your way toward Alzheimer’s, and it didn’t need to get to that point in the first place.

As with cancer, early detection should not be confused with prevention, as diagnosing does not prevent you from having to figure out how to reverse the damage. Based on what we currently know, it seems foolish in the extreme to ignore dietary factors, and a key consideration is to reduce your net carb consumption and increase healthy fats.

According to Dr. David Perlmutter, a neurologist and author of “Grain Brain” and “Brain Maker,” anything that promotes insulin resistance will ultimately also raise your risk of Alzheimer’s. As a general rule, you’ll want to keep your fasting insulin level below 3 uIU/mL. (As a reference range, the corresponding fasting glucose level for this number would be below 75 mg/dL.)34

To this I would add that any strategy that enhances your mitochondrial function will lower your risk. Based on the evidence, I believe the cyclical ketogenic diet I describe in my book “Fat for Fuel” can go a long way toward avoiding neurological degeneration by optimizing your mitochondrial function and biological regeneration.

Other Helpful Prevention Strategies

Aside from adopting a cyclical ketogenic diet, focused on whole food (opposed to processed fare), following are several other lifestyle strategies I believe to be helpful and important when it comes to preventing the neurodegeneration associated with Alzheimer’s: 














Optimize your omega-3 level — High intake of the omega-3 fats EPA and DHA help prevent cell damage caused by Alzheimer’s disease, thereby slowing down its progression and lowering your risk of developing the disorder. Ideally, get an omega-3 index test done once a year to make sure you’re in a healthy range. Your omega-3 index should be above 8 percent and your omega 6-to-3 ratio between 0.5 and 3.0.

Optimize your gut flora — To do this, avoid processed foods, antibiotics and antibacterial products, fluoridated and chlorinated water, and be sure to eat traditionally fermented and cultured foods, along with a high-quality probiotic if needed. Dr. Steven Gundry does an excellent job of expanding on this in his book “The Plant Paradox.”

Intermittently fastIntermittent fasting is a powerful tool to jump-start your body into remembering how to burn fat and repair the insulin/leptin resistance that is a primary contributing factor for Alzheimer’s. Once you have worked your way up to where you’ve been doing 20-hour daily intermittent fasting for a month, are metabolically flexible and can burn fat as your primary fuel, you can progress to the far more powerful five-day water fasts.

Move regularly and consistently throughout the day — It’s been suggested that exercise can trigger a change in the way the amyloid precursor protein is metabolized,35 thus, slowing down the onset and progression of Alzheimer’s.

Exercise also increases levels of the protein PGC-1 alpha. Research has shown that people with Alzheimer’s have less PGC-1 alpha in their brains and cells that contain more of the protein produce less of the toxic amyloid protein associated with Alzheimer’s.

Optimize your magnesium level — Preliminary research strongly suggests a decrease in Alzheimer symptoms with increased levels of magnesium in the brain. Keep in mind that the only magnesium supplement that appears to be able to cross the blood-brain barrier is magnesium threonate. 

Optimize your vitamin D, ideally through sensible sun exposure — Sufficient vitamin D is imperative for proper functioning of your immune system to combat inflammation associated with Alzheimer’s and, indeed, research shows people living in northern latitudes have higher rates of death from dementia and Alzheimer’s than those living in sunnier areas, suggesting vitamin D and/or sun exposure are important factors.36

If you are unable to get sufficient amounts of sun exposure, take daily supplemental vitamin D3 to reach and maintain a blood level of 60 to 80 ng/ml. That said, it’s important to recognize that sun exposure is important for reasons unrelated to vitamin D.

Your brain responds to the near-infrared light in sunlight in a process called photobiomodulation. Research shows near-infrared stimulation of the brain boosts cognition and reduces symptoms of Alzheimer’s, including more advanced stages of the disease. Delivering near-infrared light to the compromised mitochondria synthesizes gene transcription factors that trigger cellular repair, and your brain is one of the most mitochondrial-dense organs in your body.

Avoid and eliminate mercury from your body — Dental amalgam fillings are one of the major sources of heavy metal toxicity; however, you should be healthy prior to having them removed. Once you have adjusted to following the diet described in my optimized nutrition plan, you can follow the mercury detox protocol and then find a biological dentist to have your amalgams removed.

Avoid and eliminate aluminum from your body — Common sources of aluminum include antiperspirants, nonstick cookware and vaccine adjuvants. For tips on how to detox aluminum, please see my article, “First Case Study to Show Direct Link between Alzheimer’s and Aluminum Toxicity.” There is some suggestion that certain mineral waters high in silicic acid may help your body eliminate aluminum.

Avoid flu vaccinations — Most flu vaccines contain both mercury and aluminum.

Avoid statins and anticholinergic drugs — Drugs that block acetylcholine, a nervous system neurotransmitter, have been shown to increase your risk of dementia. These drugs include certain nighttime pain relievers, antihistamines, sleep aids, certain antidepressants, medications to control incontinence and certain narcotic pain relievers.

Statin drugs are particularly problematic because they suppress the synthesis of cholesterol, deplete your brain of coenzyme Q10, vitamin K2 and neurotransmitter precursors, and prevent adequate delivery of essential fatty acids and fat-soluble antioxidants to your brain by inhibiting the production of the indispensable carrier biomolecule known as low-density lipoprotein.

Limit your exposure to dangerous EMFs (cellphones, Wi-Fi routers and modems)Radiation from cellphones and other wireless technologies trigger excessive production of peroxynitrites,37 a highly damaging reactive nitrogen species.

Increased peroxynitrites from cellphone exposure will damage your mitochondria,38,39 and your brain is the most mitochondrial-dense organ in your body. Increased peroxynitrite generation has also been associated with increased levels of systemic inflammation by triggering cytokine storms and autonomic hormonal dysfunction.

Optimize your sleep — Sleep is necessary for maintaining metabolic homeostasis in your brain. Without sufficient sleep, neuron degeneration sets in, and catching up on sleep during weekends will not prevent this damage.40,41,42

Sleep deprivation causes disruption of certain synaptic connections that can impair your brain’s ability for learning, memory formation and other cognitive functions. Poor sleep also accelerates the onset of Alzheimer’s disease.43

Most adults need seven to nine hours of uninterrupted sleep each night. Deep sleep is the most important, as this is when your brain’s glymphatic system performs its cleanout functions, eliminating toxic waste from your brain, including amyloid beta.

Challenge your mind daily — Mental stimulation, especially learning something new, such as learning to play an instrument or a new language, is associated with a decreased risk of dementia and Alzheimer’s. Researchers suspect that mental challenge helps to build up your brain, making it less susceptible to the lesions associated with Alzheimer’s disease.

[ad_2]

Source link

قالب وردپرس

Health

Sweet! Here are 7 reasons to eat sweet potatoes

Editor

Published

on

By

(Natural News) Sweet potatoes may not be as popular as regular potatoes, which is too bad — since they’re packed with vitamins and minerals. One cup of sweet potatoes can provide more than 100 percent of the daily value of vitamin A. It’s also rich in vitamin C, dietary fiber, and manganese. Both purple and orange varieties contain antioxidants that can protect the body from damage caused by free radicals.

Eating sweet potatoes is beneficial for your health

Sweet potatoes are brimming with micronutrients and antioxidants —  making them useful to your health. Below is a list of reasons why you should incorporate sweet potatoes into your diet.

They improve brain function

The purple variety of sweet potato contains anthocyanins. Anthocyanins are known for their anti-inflammatory properties. Studies have revealed that anthocyanins are effective at improving cognitive function. Moreover, the results suggest that purple yams can help protect against memory loss. Antioxidants from the purple variety safeguard the brain against damage from free radicals and inflammation.

They aid digestion

Sweet potatoes are rich in dietary fiber. This macronutrient prevents constipation, diarrhea, and bloating by adding bulk and drawing water to the stool. In addition, fiber keeps a healthy balance in the gut by promoting the growth of good bacteria.

They slow down aging

The beta-carotene in orange sweet potatoes can help reduce damage caused by prolonged sun exposure. This is especially true for people diagnosed with erythropoietic protoporphyria and other photosensitive diseases. Sweet potatoes also contain antioxidants that protect against free radical damage. Free radicals are not only linked to diseases but also premature aging.

They boost the immune system

Orange and purple sweet potatoes are loaded with a good number of antioxidants that help protect the body from harmful molecules that cause inflammation and damage DNA. This, in turn, protects the body from chronic diseases like cancer and heart disease.

They can prevent cancer

Eating sweet potatoes can help protect against various types of cancers. The compounds in sweet potatoes restrict the development of cancer cells. Test tube studies have shown that anthocyanins can prevent cancers in the bladder, breast, colon, and stomach.

They lower blood sugar

Despite its relatively high glycemic index, studies have shown that the regular intake of sweet potatoes can help lower blood sugar, thanks to the presence of dietary fiber. While fiber falls under carbohydrates, it is digested differently, compared to starchy and sugary forms of carbohydrates. Interestingly, insulin doesn’t process fiber (unlike other types which get turned into glucose), and it only passes through the digestive tract.

They promote healthy vision

Orange sweet potatoes are rich in a compound called beta-carotene, an antioxidant which transforms into vitamin A in the body. Adequate intake of vitamin A promotes eye health. Conversely, deficiencies in vitamin A have been linked to a particular type of blindness called xerophthalmia.

Sweet potatoes are easy to incorporate into your everyday meals. They are best prepared boiled but can also be baked, roasted, or steamed — they can even replace other carbohydrates such as rice, potatoes, and toast. (Related: Understanding the phytochemical and nutrient content of sweet potato flours from Vietnam.)

Continue Reading

Health

Frostbite: What it is and how to identify, treat it

Editor

Published

on

By

Manitoba’s temperature has plummeted to its coldest level this season, triggering warnings about the extreme risk of frostbite.

Oh, we know it’s cold. We can feel Jack Frost nipping at our noses. But what about when he gnaws a little harder — what exactly does “frostbite” mean?

People tend to underestimate the potential for severe injuries in the cold, says the Winnipeg Regional Health Authority. We laugh off the sting of the deep freeze, rub our hands back from the brink of numbness and wear our survival proudly like a badge.

That’s because, in most cases, frostbite can be treated fairly easily, with no long-term effects.

But it can also lead to serious injury, including permanent numbness or tingling, joint stiffness, or muscle weakness. In extreme cases, it can lead to amputation.

Bitter cold can cause frostbite in just minutes. Here’s how to recognize the warning signs and treat them. 0:59

Here’s a guide to identifying the first signs, how to treat them, and when to seek medical help.

What is frostbite and frostnip?

Frostbite is defined as bodily injury caused by freezing that results in loss of feeling and colour in affected areas. It most often affects the nose, ears, cheeks, chin, fingers or toes — those areas most often exposed to the air.

Cooling of the body causes a narrowing of the blood vessels, slowing blood flow. In temperatures below –4 C, ice crystals can form in the skin and the tissue just below it.

Frostnip most commonly affects the hands and feet. It initially causes cold, burning pain, with the area affected becoming blanched. It is easy to treat and with rewarming, the area becomes reddened.

Frostbite is the acute version of frostnip, when the soft tissue actually freezes. The risk is particularly dangerous on days with a high wind chill factor. If not quickly and properly treated, it can lead to the loss of tissues or even limbs. 

Signs of frostbite

Health officials call them the four P’s:

  • Pink: Skin appears reddish in colour, and this is usually the first sign.
  • Pain: The cold becomes painful on skin.
  • Patches: White, waxy-feeling patches show when skin is dying.
  • Prickles: Affected areas feel numb or have reduced sensation.

Symptoms can also include:

  • Reduced body temperature.
  • Swelling.
  • Blisters.
  • Areas that are initially cold, hard to the touch.

Take quick action

If you do get frostbite, it is important to take quick action.

  • Most cases of frostbite can be treated by heating the exposed area in warm (not hot) water.
  • Immersion in warm water should continue for 20-30 minutes until the exposed area starts to turn pink, indicating the return of blood circulation.
  • Use a warm, wet washcloth on frostbitten nose or earlobes.
  • If you don’t have access to warm water, underarms are a good place to warm frostbitten fingers. For feet, put them against a warm person’s skin.
  • Drink hot fluids such as hot chocolate, coffee or tea when warming.
  • Rest affected limbs and avoid irritation to the skin.
  • E​levate the affected limb once it is rewarmed.

Rewarming can take up to an hour and can be painful, especially near the end of the process as circulation returns. Acetaminophen or ibuprofen may help with the discomfort.

Do not …

There are a number of things you should avoid:

  • Do not warm the area with dry heat, such as a heating pad, heat lamp or electric heater, because frostbitten skin is easily burned.
  • Do not rub or massage affected areas. This can cause more damage.
  • Do not drink alcohol.
  • Do not walk on your feet or toes if they are frozen.
  • Do not break blisters.

Seek immediate medical attention

While you can treat frostbite yourself if the symptoms are minor — the skin is red, there is tingling — you should seek immediate medical attention at an emergency department if:

  • The exposed skin is blackened.
  • You see white-coloured or grey-coloured patches.
  • There is severe pain or the area is completely numb.
  • The skin feels unusually firm and is not sensitive to touch after one hour of rewarming.
  • There are large areas of blistering.
  • There is a bluish discolouration that does not resolve with rewarming.

Be prepared

The best way to avoid frostbite is to be prepared for the weather in the first place.

Wear several loose layers of clothing rather than a single, thick layer to provide good insulation and keep moisture away from your skin.

The outer garment should breathe but be waterproof and windproof, with an inner thermal layer. Retain body heat with a hat and scarf. Mittens are warmer than gloves because they keep the fingers together.

Be sure your clothing protects your head, ears, nose, hands and feet, especially for children.

Wind chill and frostbite rates

Wind chill: 0 to –9.
Frostbite risk: Low.

Wind chill: –28 to –39.
Frostbite risk: Moderate.

Exposed skin can freeze in 10-30 minutes

Wind chill: –40 to –47.
Frostbite risk: High.

Exposed skin can freeze in five to 10 minutes.

Wind chill: –48 to –54.
Frostbite risk: Very High.

Exposed skin can freeze in two to five minutes.

Wind chill: –55 and lower.
Frostbite risk: Extremely High.

Exposed skin can freeze in less than two minutes.
 

NOTE: In sustained winds over 50 km/h, frostbite can occur faster than indicated.

Source: Environment Canada

Source link

قالب وردپرس

Continue Reading

Health

Awkward Flu Jabs Attempted at Golden Globes

Editor

Published

on

By

In what can only be described as a new level of propaganda, hosts Andy Samberg and Sandra Oh featured a flu shot stunt during the 76th Golden Globe Awards ceremony. They told the audience to roll up their sleeves, as they would all be getting flu shots, while people in white coats stormed down the aisles, syringes in hand.

Most of the audience looked thoroughly uneasy at the prospect of having a stranger stick them with a needle in the middle of an awards show. But perhaps the worst part of the scene was when Samberg added that anti-vaxxers could put a napkin over their head if they wanted to be skipped, basically suggesting that anyone opposed to a flu shot deserved to be branded with a proverbial scarlet letter.

The flu shots, for the record, were reportedly fake,1 nothing more than a bizarre gag that left many people stunned by the Globe’s poor taste in turning a serious medical choice into a publicity gimmick.

Flu Shot Stunt Reeks of Desperation

Whoever came up with the idea to turn the Golden Globes into a platform for a public health message probably thought it was ingenious, but the stunt only serves as a seemingly desperate attempt to make flu shots relevant and in vogue. During the 2017 to 2018 flu season, only 37 percent of U.S. adults received a flu shot, a 6 percent drop from the prior season.2

“To improve flu vaccination coverage for the 2018-19 flu season, health care providers are encouraged to strongly recommend and offer flu vaccination to all of their patients,” the U.S. Centers for Disease Control and Prevention (CDC) wrote. “People not visiting a provider during the flu season have many convenient places they can go for a flu vaccination.”3

Yet, perhaps the decline in people choosing to get vaccinated has nothing to do with convenience and everything to do with their dismal rates of efficacy. In the decade between 2005 and 2015, the influenza vaccine was less than 50 percent effective more than half of the time.4

The 2017/2018 flu vaccine was a perfect example of this trend. The overall adjusted vaccine effectiveness against influenza A and B virus infection was just 36 percent.5

Health officials blamed the flu season’s severity on the dip in vaccination rates, but as Dr. Paul Auwaerter, clinical director of the division of infectious diseases at Johns Hopkins University School of Medicine, told USA Today, “[I]t is also true that the vaccine was not as well matched against the strains that circulated.”6

But bringing flu shots to the Golden Globes, and calling out “anti-vaxxers,” is nothing more than “medical care, by shame,” noted Dr. Don Harte, a chiropractic activist in California. “But it was entertaining, in a very weird way, including the shock and disgust of some of the intended victims, notably [Willem Dafoe],” he said, adding:7

“This Hollywood publicity stunt for the flu vaccine is one of the stupidest things I’ve ever seen from celebrities. But it does go with the flu shot itself, which is, perhaps, the stupidest of all the vaccines available.”

Did 80,000 People Really Die From the Flu Last Year?

The CDC reported that 79,400 people died from influenza during the 2017/2018 season, which they said “serves as a reminder of how severe seasonal influenza can be.”8 It’s important to remember, however, that the 80,000 deaths figure being widely reported in the media is not actually all “flu deaths.”

According to the CDC, “We look at death certificates that have pneumonia or influenza causes (P&I), other respiratory and circulatory causes (R&C), or other nonrespiratory, noncirculatory causes of death, because deaths related to flu may not have influenza listed as a cause of death.”9

As for why the CDC doesn’t base flu mortality estimates only on death certificates that list influenza, they noted, “Seasonal influenza may lead to death from other causes, such as pneumonia, congestive heart failure or chronic obstructive pulmonary disease … Additionally, some deaths — particularly among the elderly — are associated with secondary complications of seasonal influenza (including bacterial pneumonias).”10

In other words, “flu deaths” are not just deaths directly caused by the influenza virus, but also secondary infections such as pneumonia and other respiratory diseases, as well as sepsis.11

According to the CDC, most of the deaths occurred among those aged 65 years and over, a population that may already have preexisting conditions that makes them more susceptible to infectious diseases. As Harte said of annual flu deaths, “[M]ost if not all, I would assume, are of people who are already in very bad shape.12

CDC Claims Flu Vaccine Reduces Flu Deaths in the Elderly — But Does It?

Since people aged 65 and over are those most at risk from flu complications and death, the CDC has been vocal in their claims that the flu shot significantly reduces flu-related deaths among this population. The research, however, says otherwise.

Research published in 2005 found no correlation between increased vaccination rates among the elderly and reduced mortality. According to the authors, “Because fewer than 10 percent of all winter deaths were attributable to influenza in any season, we conclude that observational studies substantially overestimate vaccination benefit.”13

A 2006 study also showed that even though seniors vaccinated against influenza had a 44 percent reduced risk of dying during flu season than unvaccinated seniors, those who were vaccinated were also 61 percent less like to die before the flu season ever started.14

This finding has since been attributed to a “healthy user effect,” which suggests that older people who get vaccinated against influenza are already healthier and, therefore, less likely to die anyway, whereas those who do not get the shot have suffered a decline in health in recent months.

Journalist Jeremy Hammond summed up the CDC’s continued spreading of misinformation regarding the flu vaccine’s effectiveness in the elderly, as they continue to claim it’s the best way to prevent the flu:15

[T]here is no good scientific evidence to support the CDC’s claim that the influenza vaccine reduces hospitalizations or deaths among the elderly.

The types of studies the CDC has relied on to support this claim have been thoroughly discredited due to their systemic ‘healthy user’ selection bias, and the mortality rate has observably increased along with the increase in vaccine uptake — which the CDC has encouraged with its unevidenced claims about the vaccine’s benefits, downplaying of its risks, and a marketing strategy of trying to frighten people into getting the flu shot for themselves and their family.”

Death of Vaccinated Child Blamed on Not Getting Second Dose

In January 2019, the state of Colorado reported the first child flu death of the 2018/2019 flu season — a child who had received influenza vaccination. But instead of highlighting the vaccine’s failure and clear limitations, the Colorado Department of Public Health and Environment blamed the death on the child being only “partially vaccinated.”

“It’s an unfortunate but important reminder of the importance of two doses of influenza vaccine for young children who are receiving influenza vaccine for the first time,” Dr. Rachel Herlihy, who is the state communicable disease epidemiologist, said in a news release.16 For those who aren’t aware, the CDC notes that one dose of flu shot may not be enough to protect against the flu. Instead, they state:17

“Children 6 months through 8 years getting vaccinated for the first time, and those who have only previously gotten one dose of vaccine, should get two doses of vaccine this season …

The first dose ‘primes’ the immune system; the second dose provides immune protection. Children who only get one dose but need two doses can have reduced or no protection from a single dose of flu vaccine.”

Not only may the flu vaccine fail to provide protection against the flu, but many people are not aware that other types of viruses are responsible for about 80 percent of all respiratory infections during any given flu season.18 The flu vaccine does not protect against or prevent any of these other types of respiratory infections causing influenza-like illness (ILI) symptoms.

The chance of contracting actual type A or B influenza, caused by one of the three or four influenza virus strains included in the vaccine, is much lower compared to getting sick with another type of viral or bacterial infection during the flu season.

Does Flu Vaccine Increase the Risk of Influenza Infection, Contribute to Vaccine Shedding?

There are serious adverse effects that can come along with annual flu vaccination, including potentially lifelong side effects such as Guillain Barré syndrome and chronic shoulder injury related to vaccine administration (SIRVA). They may also increase your risk of contracting more serious flu infections, as research suggests those who have been vaccinated annually may be less protected than those with no prior flu vaccination history.19

Research presented at the 105th International Conference of the American Thoracic Society in San Diego also revealed that children who get seasonal flu shots are more at risk of hospitalization than children who do not. Children who had received the flu vaccine had three times the risk of hospitalization as children who had not. Among children with asthma, the risk was even higher.20

There’s also the potential for vaccine shedding, which has taken on renewed importance with the reintroduction of the live virus vaccine FluMist during the 2018/2019 season. While the CDC states that the live flu virus in FluMist is too weak to actually give recipients the flu, research has raised some serious doubts that this is the case.

One recent study revealed not only that influenza virus may be spread via simple breathing (i.e., no sneezing or coughing required) but also that repeated vaccination increases the amount of virus released into the air.21

MedImmune, the company that developed FluMist, is aware that the vaccine sheds vaccine-strain virus. In its prescribing information, they describe a study on the transmission of vaccine-strain viruses from vaccinated children to nonvaccinated children in a day care setting.

In 80 percent of the FluMist recipients, at least one vaccine-strain virus was isolated anywhere from one to 21 days following vaccination. They further noted, “One placebo subject had mild symptomatic Type B virus infection confirmed as a transmitted vaccine virus by a FluMist recipient in the same playgroup.”22

Are There Other Ways to Stay Healthy During Flu Season?

Contrary to the CDC’s and Golden Globe’s claims that flu vaccinations are a great way to prevent flu, other methods exist to help you stay healthy during the flu season and all year, and they’re far safer than annual flu vaccination. Vitamin D testing and optimization have been shown to cut your risk of respiratory infections, including colds and flu, in half if you are vitamin D deficient, for instance.23,24

In my view, optimizing your vitamin D levels is one of the absolute best respiratory illness prevention and optimal health strategies available. Influenza has also been treated with high-dose vitamin C,25 and taking zinc lozenges at the first sign of respiratory illness can also be helpful.

Following other basic tenets of health, like eating right, getting sound sleep, exercising and addressing stress are also important, as is regularly washing your hands.

Source link

قالب وردپرس

Continue Reading

Chat

Trending