Connect with us

Technology

Milky Way was part of cosmic collision 10 billion years ago

Editor

Published

on

[ad_1]

Astronomers using the European Space Agency’s Gaia space telescope have discovered that our galaxy was involved in a cosmic merger 10 billion years ago.

The Milky Way is believed to have formed more than 13 billion years ago. But shortly thereafter — shortly in cosmic terms, at least — another galaxy slammed into it, dispersing its stars while also creating new ones within the Milky Way.

Spiral galaxies like our own are made up of several parts: the central bulge, spiral arms, the disk and a surrounding halo.

The researchers, who published their findings today in the journal Nature, found evidence of the merger by studying the movement of seven million stars in the the Milky Way’s inner halo, a region around the galaxy’s thick disk of stars. They found that about 30,000 of these stars were moving in the opposite direction of the other stars in the galaxy — a clear sign they may have originated elsewhere.

This clip shows a simulation of the merger of a Milky Way-like galaxy (with its stars in blue) and a smaller galaxy (with its stars in red). Initially, the two galaxies are clearly separated, but gravity pulls them together and they merge.

Before this discovery, the team had run simulations of galactic mergers. What they observed with the Gaia data — and with data from the Apache Point Observatory’s Galactic Evolution Experiment (APOGEE) in Chile — matched these simulations, leading them to conclude another galaxy had merged with the Milky Way.

The researchers say one of the clues was found in the evidence of 13 globular clusters in the same region of the galaxy — thousands to millions of stars all bound tightly together by gravity — that move in the same manner as the 30,000 stars they observed.  

“The discovery that … the inner halo of the Milky Way turns out to be a different galaxy that’s basically contributed all of the stars to our own galaxy, I think that was a big surprise,” said lead author Amina Helmi, an astronomer with the Kapteyn Astronomical Institute at the University of Groningen in the Netherlands.

The globular cluster Omega Centauri — with as many as ten million stars — is seen in this image captured from the European Southern Observatory’s La Silla Observatory. (European Southern Observatory)

Another piece of evidence was the composition of the stars themselves. Stars from different galaxies have their own kind of fingerprint. And that was the case with the 30,000 odd-moving stars they discovered in the Milky Way’s halo.

“It’s very cool that stars that formed in another galaxy could be lurking right next door to us,” said Kim Venn, a professor at the University of Victoria’s department of physics and astronomy, who was not involved in the study.

Stellar explosions

The merger would have produced brilliant stellar explosions — supernovas — and the rapid birth of stars.

“If you were there … you would see bright, blue young stars. Kind of like fireworks,” Helmi said.

Three billion years after the Big Bang, galaxy mergers were starting to slow down, but they were much more common than they are today. In about four billion years, the Milky Way and the neighbouring Andromeda Galaxy will have a similar collision.

The researchers named the galaxy that merged with ours Gaia-Enceladus, after both the telescope and the mythical Greek figure who was the son of Gaia, the mother of all life.

Gaia-Enceladus is believed to have been roughly the size of one of the Magellanic Clouds, two galaxies that are satellites of our own and roughly 10 times smaller.

But 10 billion years ago, the Milky Way was itself much smaller, which illustrates the explosive, star-creating power of the merger.

This Hubble image of the Antennae galaxies is the sharpest yet of their merger. (ESA/Hubble, and B. Whitmore (Space Telescope Science Institute)/Reuters)

The researchers hope that by understanding the collision in the Milky Way, they can better understand the process in other galaxies as well.

​”The other thing we’d like to do is go beyond this 10 billion years to earlier and earlier and see if we can find evidence of mergers that took place early on and what those mergers looked like,” Helmi said. “By studying these stars that were present in these galaxies, you get a way of understanding the properties of galaxies.”

The research is far from finished. With the latest Gaia data release, there’s much more to do.

“What I really like is that Gaia data was combined with the  … APOGEE data,” Venn said. “It took both surveys working together, and both of these projects will continue, so we could find more stars from the merged galaxy and probably start to reconstruct its whole history.”

And that galactic sleuthing is exactly what’s so enticing to Helmi.

“The Milky Way is our home, and people like to know their origins; they like to know their own history. And to me, that’s what’s fascinating.”

[ad_2]

Source link

قالب وردپرس

Technology

Top 5 Analytics Trends That Are Shaping The Future

Editor

Published

on

By

Digital transformation is increasingly becoming the focus for many CIOs around the world today—with analytics playing a fundamental role in driving the future of the digital economy.

While data is important to every business, it is necessary for businesses to have a firm grip on data analytics to allow them transform raw pieces of data into important insights. However, unlike the current trends in business intelligence—which is centred around data visualization—the future of data analytics would encompass a more contextual experience.

“The known data analytics development cycle is described in stages: from descriptive (what happened) to diagnostic (why did it happen), to discovery (what can we learn from it), to predictive (what is likely to happen), and, finally, to prescriptive analytics (what action is the best to take),” said Maurice op het Veld is a partner at KPMG Advisory in a report.

“Another way of looking at this is that data analytics initially “supported” the decision-making process but is now enabling “better” decisions than we can make on our own.”

Here are some of the current trends that arealready shaping the future of data analytics in individuals and businesses.

  1. Growth in mobile devices

With the number of mobile devices expanding to include watches, digital personal assistants, smartphones, smart glasses, in-car displays, to even video gaming systems, the final consumption plays a key role on the level of impact analytics can deliver.

Previously, most information consumers accessed were on a computer with sufficient room to view tables, charts and graphs filled with data, now, most consumers require information delivered in a format well optimized for whatever device they are currently viewing it on.

Therefore, the content must be personalized to fit the features of the user’s device and not just the user alone.

  1. Continuous Analytics

More and more businesses are relying on the Internet of Things (IoT) and their respective streaming data—which in turn shortens the time it takes to capture, analyze and react to the information gathered. Therefore, while analytics programspreviously were termed successful when results were delivered within days or weeks of processing, the future of analytics is bound to drastically reduce this benchmark to hours, minutes, seconds—and even milliseconds.

“All devices will be connected and exchange data within the “Internet of Things” and deliver enormous sets of data. Sensor data like location, weather, health, error messages, machine data, etc. will enable diagnostic and predictive analytics capabilities,” noted Maurice.

“We will be able to predict when machines will break down and plan maintenance repairs before it happens. Not only will this be cheaper, as you do not have to exchange supplies when it is not yet needed, but you can also increase uptime.”

  1. Augmented Data Preparation

During the process of data preparation, machine learning automation will begin to augment data profiling and data quality, enrichment, modelling, cataloguing and metadata development.

Newer techniques would include supervised, unsupervised and reinforcement learning which is bound to enhance the entire data preparation process. In contrast to previous processes—which depended on rule-based approach to data transformation—this current trend would involve advanced machine learning processes that would evolve based on recent data to become more precise at responding to changes in data.

  1. Augmented Data Discovery

Combined with the advancement in data preparation, a lot of these newer algorithms now allow information consumers to visualize and obtain relevant information within the data with more ease. Enhancements such as automatically revealing clusters, links, exceptions, correlation and predictions with pieces of data, eliminate the need for end users to build data models or write algorithms themselves.

This new form of augmented data discovery will lead to an increase in the number of citizen data scientist—which include information users who, with the aid of augmented assistance can now identify and respond to various patterns in data faster and a more distributed model.

  1. AugmentedData Science

It is important to note that the rise of citizen data scientist will not in any way eliminate the need for a data scientist who gathers and analyze data to discover profitable opportunities for the growth of a business. However, as these data scientists give room for citizen data scientists to perform the easier tasks, their overall analysis becomes more challenging and equally valuable to the business.

As time goes by, machine learning would be applied in other areas such as feature and model selection. This would free up some of the tasks performed by data scientist and allow them focus on the most important part of their job, which is to identify specific patterns in the data that can potentially transform business operations and ultimately increase revenue.

Continue Reading

Technology

Waterloo drone-maker Aeryon Labs bought by U.S. company for $265M

Editor

Published

on

By

[ad_1]

Waterloo’s Aeryon Labs has been bought by Oregon-based FLIR Systems Inc. for $256 million, or $200 million US.

The acquisition was announced Monday. 

Dave Kroetsch, co-founder and chief technology officer of Aeryon Labs, says not much will change in the foreseeable future.

“The Waterloo operations of Aeryon Labs will actually continue as they did yesterday with manufacturing, engineering and all the functions staying intact in Waterloo and ultimately, we see growing,” he said.

“The business here is very valuable to FLIR and our ability to sell internationally is a key piece of keeping these components of the business here in Canada.”

Aeroyn Labs builds high-performance drones that are sold to a variety of customers including military, police services and commercial businesses. The drones can provide high-resolution images for surveillance and reconnaissance.

The drones already include cameras and thermal technology from FLIR. Jim Cannon, president and CEO of FLIR Systems, said acquiring Aeryon Labs is part of the company’s strategy to move beyond sensors “to the development of complete solutions that save lives and livelihoods.”

‘A piece of a bigger solution’

Kroetsch said this is a good way for the company to grow into something bigger.

“We see the business evolving in much the direction our business has been headed over the last couple of years. And that’s moving beyond the drone as a product in and of itself as a drone as a piece of a bigger solution,” he said.

For example, FLIR bought a drone company that builds smaller drones that look like little helicopters.

“We can imagine integrating those with our drones, perhaps having ours carry their drones and drop them off,” he said.

FLIR also does border security systems, which Kroetsch says could use the drones to allow border agents to look over a hill where there have been issues.

“We see the opportunity there as something that we never could have done on our own but being involved with and part of a larger company that’s already providing these solutions today gives us access not only to these great applications, but also to some fantastic technologies,” he said.

Aeryon Labs has done a lot of work during emergency disasters, including in Philippines after Typhoon Hagupit in 2014, Ecuador after an earthquake in 2016 and the Fort McMurray wildfire in 2016.

[ad_2]

Source link

قالب وردپرس

Continue Reading

Technology

Inuvik infrastructure may not be ready for climate change, says study

Editor

Published

on

By

[ad_1]

The Arctic is expected to get warmer and wetter by the end of this century and new research says that could mean trouble for infrastructure in Inuvik.

The study from Global Water Futures looked at how climate change could impact Havipak Creek — which crosses the Dempster Highway in Inuvik, N.W.T. — and it predicts some major water changes.

“They were quite distressing,” John Pomeroy, director of Global Water Futures and the study’s lead author, said of the findings.

Researchers used a climate model and a hydrological model to predict future weather and climate patterns in the region. They also looked at data gathered from 1960 to the present. 

If greenhouse gas emissions continue at their current rate — which Pomeroy said they are on track to do — the study projects the region will be 6.1 C warmer by 2099 and precipitation, particularly rain, will increase by almost 40 per cent.

The study also found that the spring flood will be earlier and twice as large, and the permafrost will thaw an additional 25 centimetres. While the soil is expected to be wetter early in the summer, the study said it will be drier in late summer, meaning a higher risk of wildfires.

John Pomeroy is the director of Global Water Futures. (Erin Collins/CBC)

“The model’s painting kind of a different world than we’re living in right now for the Mackenzie Delta region,” Pomeroy said.

He noted these changes are not only expected for Havipak Creek, but also for “many, many creeks along the northern part of the Dempster [Highway].”

Pomeroy said the deeper permafrost thaw and a bigger spring flood could pose challenges for buildings, roads, culverts and crossings in the area that were designed with the 20th century climate in mind.

He said the projected growth of the snowpack and the spring flood are “of grave concern because that’s what washes out the Dempster [Highway] and damages infrastructure in the area.”

Culverts and bridges may have to be adjusted to allow room for greater stream flows, Pomeroy said. And building foundations that are dependent upon the ground staying frozen will have to be reinforced or redesigned.

Pomeroy said the ultimate solution is for humans to reduce greenhouse gas emissions.

“This study is the future we’re heading for, but it’s not the future we necessarily have if we can find a way to reduce those gases,” he said.  

“It’d be far smarter to get those emissions under control than to pay the terrible expenses for infrastructure and endangered safety of humans and destroyed ecosystems.”

[ad_2]

Source link

قالب وردپرس

Continue Reading

Chat

Trending