Connect with us


Milky Way was part of cosmic collision 10 billion years ago





Astronomers using the European Space Agency’s Gaia space telescope have discovered that our galaxy was involved in a cosmic merger 10 billion years ago.

The Milky Way is believed to have formed more than 13 billion years ago. But shortly thereafter — shortly in cosmic terms, at least — another galaxy slammed into it, dispersing its stars while also creating new ones within the Milky Way.

Spiral galaxies like our own are made up of several parts: the central bulge, spiral arms, the disk and a surrounding halo.

The researchers, who published their findings today in the journal Nature, found evidence of the merger by studying the movement of seven million stars in the the Milky Way’s inner halo, a region around the galaxy’s thick disk of stars. They found that about 30,000 of these stars were moving in the opposite direction of the other stars in the galaxy — a clear sign they may have originated elsewhere.

This clip shows a simulation of the merger of a Milky Way-like galaxy (with its stars in blue) and a smaller galaxy (with its stars in red). Initially, the two galaxies are clearly separated, but gravity pulls them together and they merge.

Before this discovery, the team had run simulations of galactic mergers. What they observed with the Gaia data — and with data from the Apache Point Observatory’s Galactic Evolution Experiment (APOGEE) in Chile — matched these simulations, leading them to conclude another galaxy had merged with the Milky Way.

The researchers say one of the clues was found in the evidence of 13 globular clusters in the same region of the galaxy — thousands to millions of stars all bound tightly together by gravity — that move in the same manner as the 30,000 stars they observed.  

“The discovery that … the inner halo of the Milky Way turns out to be a different galaxy that’s basically contributed all of the stars to our own galaxy, I think that was a big surprise,” said lead author Amina Helmi, an astronomer with the Kapteyn Astronomical Institute at the University of Groningen in the Netherlands.

The globular cluster Omega Centauri — with as many as ten million stars — is seen in this image captured from the European Southern Observatory’s La Silla Observatory. (European Southern Observatory)

Another piece of evidence was the composition of the stars themselves. Stars from different galaxies have their own kind of fingerprint. And that was the case with the 30,000 odd-moving stars they discovered in the Milky Way’s halo.

“It’s very cool that stars that formed in another galaxy could be lurking right next door to us,” said Kim Venn, a professor at the University of Victoria’s department of physics and astronomy, who was not involved in the study.

Stellar explosions

The merger would have produced brilliant stellar explosions — supernovas — and the rapid birth of stars.

“If you were there … you would see bright, blue young stars. Kind of like fireworks,” Helmi said.

Three billion years after the Big Bang, galaxy mergers were starting to slow down, but they were much more common than they are today. In about four billion years, the Milky Way and the neighbouring Andromeda Galaxy will have a similar collision.

The researchers named the galaxy that merged with ours Gaia-Enceladus, after both the telescope and the mythical Greek figure who was the son of Gaia, the mother of all life.

Gaia-Enceladus is believed to have been roughly the size of one of the Magellanic Clouds, two galaxies that are satellites of our own and roughly 10 times smaller.

But 10 billion years ago, the Milky Way was itself much smaller, which illustrates the explosive, star-creating power of the merger.

This Hubble image of the Antennae galaxies is the sharpest yet of their merger. (ESA/Hubble, and B. Whitmore (Space Telescope Science Institute)/Reuters)

The researchers hope that by understanding the collision in the Milky Way, they can better understand the process in other galaxies as well.

​”The other thing we’d like to do is go beyond this 10 billion years to earlier and earlier and see if we can find evidence of mergers that took place early on and what those mergers looked like,” Helmi said. “By studying these stars that were present in these galaxies, you get a way of understanding the properties of galaxies.”

The research is far from finished. With the latest Gaia data release, there’s much more to do.

“What I really like is that Gaia data was combined with the  … APOGEE data,” Venn said. “It took both surveys working together, and both of these projects will continue, so we could find more stars from the merged galaxy and probably start to reconstruct its whole history.”

And that galactic sleuthing is exactly what’s so enticing to Helmi.

“The Milky Way is our home, and people like to know their origins; they like to know their own history. And to me, that’s what’s fascinating.”


Source link

قالب وردپرس


The ‘Maple Majestic’ wants to be Canada’s homegrown Tesla





Look out Tesla, Canada has a homegrown electric sedan on the way. Well, that’s if AK International Motor Corporation can drum up enough investment to make its EV a reality. Dubbed the “Maple Majestic,” the vehicle is a battery-electric designed to “excel in extreme climate performance without adversely affecting the climate, as befits a vehicle from Canada,” according to its website.

What’s in a name? — The company says the maple leaf is a “symbol of Canada’s warmth and friendliness towards all cultures,” while “majestic” refers to the country’s “status as a Constitutional Monarchy.”

That patriotism carries over into Maple Majestic’s parent company’s lofty goals. AK Motor founder Arkadiusz Kaminski says he wants the company, which he founded in 2012, to become “Canada’s first multi-brand automotive OEM,” and that the “Maple Majestic is intended to be Canada’s flagship brand of automobiles on the world stage.”

Partnerships are key — “We acknowledge that the best chance for the Maple Majestic brand to succeed, lies in continuing to build the relationship with Canada’s parts suppliers and technological innovators, whether they be academic institutions, corporations, or individual inventors,” the company explains. “We are currently seeking partners in automotive engineering, parts manufacturing, automotive assembly, electric propulsion technology, battery technology, autonomous technology, and hybrid power generation technology.”

In other words, don’t expect to be able to buy a Maple Majestic any time soon… and don’t expect to pour over 0-60 mph times, power output, range, or other key stats, because those don’t currently exist. For now, all we have are pictures and a short video clip. But at least those are arresting.

Continue Reading


PE-backed Quorum Software to merge with Canadian energy tech firm





Houston-based energy technology company Quorum Software will merge with a Canadian tech firm to bolster its presence in oil and gas services.

Quorum announced Feb. 15 it plans to merge with Calgary, Alberta-based Aucerna, a global provider of planning, execution and reserves software for the energy sector. The combined firm will operate under the Quorum Software brand.

Gene Austin, CEO of Quorum Software, will continue in his capacity as chief executive of the combined firm. Austin, former CEO of Austin-based marketing tech firm Bazaarvoice Inc., became CEO of Quorum in December 2018.

Aucerna co-founder and CEO Wayne Sim will be appointed to the Quorum Software board of directors. Both companies are backed by San Francisco- and Chicago-based private equity firm Thoma Bravo.

“Over the last 20 years, Quorum has become the leading innovator of software deployed by North American energy companies,” said Austin. “Today, Quorum is expanding the scope of our technology and expertise to all energy-producing regions of the globe. Customers everywhere will have access to a cloud technology ecosystem that connects decision-ready data from operations to the boardroom.”

In addition to the merger announcement, Quorum Software announced it had entered into an agreement with Finnish IT firm TietoEvry to purchase TietoEvry’s entire oil and gas business. The agreement, which includes hydrocarbon management, personnel and material logistics software and related services, is valued at 155 million euros, or $188 million, according to a statement from TietoEvry.

“Our three organizations complement each other — from the software that our great people design to the energy markets where we operate,” said Sim. “Our new company will be able to deliver value to our stakeholders, while accelerating the growth of our combined business and the energy industry’s software transformation.”

The combined company will serve over 1,800 energy companies in 55 countries, according to the announcement. With its headquarters in Houston, Quorum will continue to have a significant presence in Calgary and in Norway, the headquarters for TietoEvry’s oil and gas software business. Quorum will have other offices throughout North America, Latin America, Europe, Asia and the Middle East.

As of Sept. 30, 2020, private equity firm Thoma Bravo had more than $73 billion in assets under management. In late December 2020, Thoma Bravo agreed to acquire Richardson, Texas-based tech firm RealPage in a roughly $10 billion acquisition.

Continue Reading


Piece of Kitchener technology lands on Mars on Perseverance rover





KITCHENER — A piece of Kitchener technology has landed on Mars, thanks to NASA’s Perseverance rover.

The rover settled on the planet’s surface on Thursday afternoon. It’s been travelling through space since it was launched from Cape Canaveral, Fla. in July.

“The whole idea of being on a device that we’re sending to another plant with the express mission of looking for traces of past life, it’s pretty mind boggling actually,” said Rafal Pawluczyk, chief technical officer for FiberTech Optica.

The Kitchener-based company made fibre optic cables for the rover’s SuperCam that will examine samples with a camera, laser and spectrometers.

“The cables that we built take the light from that multiplexer and deliver it to each spectrograph,” Pawluczyk said.

The cables connect a device on the rover to the SuperCam, which will be used to examine rock and soil samples, to spectrometers. They’ll relay information from one device to another.

The project started four years ago with a connection to Los Alamos National Lab, where the instruments connected to the cables were developed.

“We could actually demonstrate we can design something that will meet their really hard engineering requirements,” Pawluczyk said.

The Jezero Crater is where the Perseverance rover, with FiberTech Optica’s technology onboard, landed Thursday. Scientists believe it was once flooded with water and is the best bet for finding any evidence of life. FiberTech’s cables will help that in that search.

Ioannis Haranas, an astrophysicist and professor at Wilfrid Laurier University, said the rover isn’t looking for “green men.”

“They’re looking for microbial, single-cell life, any type of fossils and stuff like that,” Haranas said. “That’s why they chose a special landing site. This could be very fertile land for that.”

“It’s very ambitious,” said Ralf Gellert, a physics professor at the University of Guelph.

Gellert helped with previous rover missions and said it’s the first time a Mars rover has landed without a piece of Guelph technology on it. While he’s not part of Perseverance’s mission, he said the possibilities are exciting.

“Every new landing site is a new piece of the puzzle that you can put together with the new results that we have from the other landing sites,” he said.

“It’s scientifically very interesting because, even though we don’t have an instrument on that rover, we can compare what the new rover Perseverance finds at this new landing site,” he said.

Now that Perseverance has landed on Mars, FiberTech is looking ahead to its next possible mission into space.

Continue Reading